4.6 Article

Mesoporous Mn3O4-CoO core-shell spheres wrapped by carbon nanotubes: a high performance catalyst for the oxygen reduction reaction and CO oxidation

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 2, 期 11, 页码 3794-3800

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3ta14453d

关键词

-

资金

  1. National Natural Science Foundation of China [51173055]
  2. Fundamental Research Funds for the Central Universities [2013QN158]
  3. Research Fund for the Doctoral Program of Higher Education of China [20130142120024]

向作者/读者索取更多资源

The controllable synthesis of transition metal oxide nanomaterials has attracted considerable attention for the replacement of the current precious metal catalysts. Herein, we have developed a facile method to successfully synthesize Mn3O4-CoO core-shell mesoporous spheres, which are wrapped by carbon nanotubes (CNT), and investigated the catalytic activity for the oxygen reduction reaction (ORR) and CO oxidation for the first time. The ORR process on the Mn3O4-CoO/CNT catalysts was via a complete oxygen reduction process (4e(-)), and the catalytic activity was far better than for the Mn3O4/CNT and CoO/CNT catalysts. The durability even out-performed the commercial Pt/C catalysts. As compared with the Mn3O4/CNT and CoO/CNT catalysts, the Mn3O4-CoO/CNT catalysts also exhibited better catalytic activity for CO oxidation. The initial and complete conversion temperatures for the Mn3O4-CoO/CNT catalysts can decrease to 30 and 120 degrees C, respectively. The good catalytic activity for the ORR and CO oxidation is due to the high specific surface area (138.9 m2 g(-1)) provided which gives many catalytically active sites, mesoporous structure (15 to 120 nm) favoured for molecule accessibility to the active surface of the nanocrystals and mass transport, and the synergistic catalytic effect of Mn3O4 and CoO catalytically active sites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据