4.6 Article

Graphene-templated growth of hollow Ni3S2 nanoparticles with enhanced pseudocapacitive performance

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 2, 期 45, 页码 19214-19220

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ta04502e

关键词

-

资金

  1. Research Grant Council of Hong Kong SAR [623512, DAG12EG05]

向作者/读者索取更多资源

Droplet-shape hollow Ni3S2 nanoparticles, as well as corresponding partially nickel-filled nanoparticles, of narrow diameter distribution and uniform dispersion were successfully synthesized on two-dimensional graphene templates using a facile process with moderate reaction conditions. The nanoparticle composites were examined as electrochemical supercapacitor materials for energy storage application. We found that the shape of the nanoparticles is dominantly droplet-shape, with shape complementary to graphene support, which ensures good contact between them. The height of the nanoparticles increases linearly with the diameter with a coefficient of 0.44 from the fitting results, and the average height/diameter ratio of those nanoparticles is about 0.6, evidence that the nanoparticles have strong interaction with the graphene template, partially because of graphene-nickel ion interaction which ensures good surface wetting. Such a composite of droplet-shape hollow Ni3S2 nanoparticles grown on reduced graphene oxides (rGOs) exhibits a high specific capacitance of 1022.8 F g(-1) at scanning rate of 2 mV s(-1), with a value of 1015.6 F g(-1) obtained at a discharge current density of 1 A g(-1). Improvement of the rate capability can be further obtained by partially filling the hollow core with nickel metal, as 93.6% of the specific capacitance is retained with this structure by increasing the discharge density from 1 A g(-1) to 10 A g(-1). Our method provides a new approach for controlling the structure of graphene-based nanocomposites, with the potential for use in high performance supercapacitor applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据