4.6 Article

Synthesis of a novel and stable g-C3N4-Ag3PO4 hybrid nanocomposite photocatalyst and study of the photocatalytic activity under visible light irradiation

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 1, 期 17, 页码 5333-5340

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3ta00186e

关键词

-

资金

  1. DST, Govt. of India [SR/FT/CS-096/2009]
  2. MHRD, Govt. of India

向作者/读者索取更多资源

A facile and reproducible template free in situ precipitation method has been developed for the synthesis of Ag3PO4 nanoparticles on the surface of a g-C3N4 photocatalyst at room temperature. The g-C3N4-Ag3PO4 organic-inorganic hybrid nanocomposite photocatalysts were characterized by various techniques. TEM results show the in situ growth of finely distributed Ag3PO4 nanoparticles on the surface of the g-C3N4 sheet. The optimum photocatalytic activity of g-C3N4-Ag3PO4 at 25 wt% of g-C3N4 under visible light is almost 5 and 3.5 times higher than pure g-C3N4 and Ag3PO4 respectively. More attractively, the stability of Ag3PO4 was improved due to the in situ deposition of Ag3PO4 nanoparticles on the surface of the g-C3N4 sheet. The improved performance of the g-C3N4-Ag3PO4 hybrid nanocomposite photocatalysts under visible light irradiation was induced by a synergistic effect, including high charge separation efficiency of the photoinduced electron-hole pair, the smaller particle size, relatively high surface area and the energy band structure. Interestingly, the heterostructured g-C3N4-Ag3PO4 nanocomposite significantly reduces the use of the noble metal silver, thereby effectively reducing the cost of the Ag3PO4 based photocatalyst.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据