4.6 Article

Crystalline donor-acceptor conjugated polymers for bulk heterojunction photovoltaics

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 1, 期 14, 页码 4415-4422

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2ta00965j

关键词

-

向作者/读者索取更多资源

Molecular engineering of conjugated polymers for tuning their energy bands is an important process in the quest for highly efficient bulk heterojunction (BHJ) polymer photovoltaic devices. One effective approach is to construct a conjugated polymer by conjugating two chemical units possessing different electron donating (donor) and accepting (acceptor) capabilities. Conjugated copolymers featuring donor-acceptor (D/A) subunits are promising materials for solar cell applications because of their tunable energy bands and solubility that can be tailored to the performances of the photovoltaic devices. Under proper processing conditions, the conjugated polymers with rigid and planar D/A segments can undergo self-assembly to form crystalline structures that improve charge carrier mobility and provide better resistance to the permeation of water and oxygen compared to amorphous polymers. Conjugated polymers with D/A structure have been investigated thoroughly over the last few years. In this highlight, we present an overview of recent developments in BHJ organic photovoltaics employing D/A crystalline copolymers as active layer materials for photon-to-electron conversion, with particular emphasis on crystalline D/A polymers featuring newly developed acceptor structures, including thieno [3,4-c]pyrrole-4,6-dione, diketo-pyrrole-pyrrole, bithiazole, thiazolothiazole and thieno[3,2-b]thiophene moieties, and conclude with future perspectives.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据