4.6 Article

Chemically tailoring the nanostructure of graphene nanosheets to confine sulfur for high-performance lithium-sulfur batteries

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 1, 期 4, 页码 1096-1101

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2ta00396a

关键词

-

资金

  1. National Natural Science Foundation of China [201173120]
  2. Natural Science Foundation of Jiangsu Province [BK2011030]
  3. Funding of Graduate Innovation Center in NUAA [kfjj20110230]

向作者/读者索取更多资源

The commercialization of lithium-sulfur (Li-S) batteries has so far been limited by their rapid capacity fading, which is induced by dissolution of intermediate polysulfides and the pulverization of the sulfur cathode due to volume expansion. Herein, we reported an efficient strategy to confine active sulfur in chemically tailored graphene nanosheets, which were prepared via modified chemical activation of hydrothermal reduced graphene oxide hydrogels. Due to its high specific surface area, large pore volume, controllable size and distribution of nanopores, the two-dimensional (2D) highly porous activated graphene nanosheets (AGNs) were proved to be a promising scaffold to uniformly confine elemental sulfur (S) in their nanopores with high loading. The resultant AGNs/S nanocomposites exhibited a reversible capacity up to 1379 mA h g(-1) at 0.2 C as well as remarkable cycling stability, which may contribute to the desirable structural features. The dense nanopores of AGNs, as microreactors for the electrochemical reactions of sulfur, minimized polysulfide dissolution and shuttling in the electrolyte, and also reserved fast transport of lithium ions to the sequestered sulfur by ensuring good electrolyte penetration. Furthermore, the AGNs with good electronic conductivity allowed good transport of electrons from/to the poorly conducting sulfur for electrochemical reactions at high rates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据