4.6 Article

SnO-nanocluster modified anatase TiO2 photocatalyst: exploiting the Sn(II) lone pair for a new photocatalyst material with visible light absorption and charge carrier separation

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 1, 期 22, 页码 6670-6677

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3ta10647k

关键词

-

资金

  1. Science Foundation Ireland (SFI) [SFI 09/SIRG/I1620]
  2. Irish Centre for High End Computing
  3. European Union [CM1104]

向作者/读者索取更多资源

Modifying TiO2 to design new photocatalysts with visible light absorption and reduced charge carrier recombination for photocatalytic depollution or water splitting is a very active field. A promising approach is to deposit small nanoclusters of a metal oxide on a semiconducting oxide such as TiO2 or ZnGa2O4. In this paper we present a first principles density functional theory (DFT) investigation of a novel concept in photocatalyst materials design: Sn(II)O nanoclusters supported on TiO2 anatase (001) and demonstrate that the presence of the Sn(II)-O lone pair in the nanoclusters gives a new approach to engineering key properties for photocatalysis. The modification of anatase with Sn(II)O reduces the band gap over unmodified anatase, thus activating the material to visible light. This arises from the upwards shift of the valence band, due to the presence of the Sn 5s-O 2p lone pair in the nanocluster. Enhanced charge separation, which is key for photocatalytic efficiency, arises from the separation of electrons and holes onto the anatase surface and the Sn(II)O nanocluster. This work realises a new strategy of exploiting the lone pair in elements such as Sn to raise the VB edge of modified TiO2 and enhance charge separation in new photocatalyst materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据