4.6 Article

Template-free synthesized Ni nanofoams as nanostructured current collectors for high-performance electrodes in lithium ion batteries

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 1, 期 34, 页码 10002-10007

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3ta11753g

关键词

-

资金

  1. National Natural Science Foundation of China [11179038, 10974073]
  2. Specialized Research Fund for the Doctoral Program of Higher Education [20120211130005]

向作者/读者索取更多资源

3D interconnected network Ni nanofoams with large surface area were fabricated by a template-free approach. Their pore size and skeleton diameter are 150-350 nm and 200-300 nm, respectively. The homogeneous foaming structure and the metallic ductility of the Ni nanofoams make them suitable to be used as nanostructured current collectors. The Ni/NiO nanostructures were prepared by in situ thermal oxidation of the obtained Ni nanofoams. As anodes of lithium ion batteries, the Ni/NiO nanofoam electrodes deliver excellent cycling stability, superior rate capability, and high areal capacity. A high reversible capacity of 835 mA h g(-1), which corresponds to an areal capacity of 2.1 mA h cm(-2), was obtained after 200 cycles at a current rate of 0.5 C (1 C = 718 mA g(-1)). The Ni nanofoams exhibit an excellent electrochemical stability in electrolytes and are compatible with various electrochemically active materials as potential nanostructured current collectors for high-performance energy storage devices. Moreover, the preparation approach of the Ni nanofoams is facile, cost-effective, and can be used for large-scale production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据