4.6 Article

Freestanding three-dimensional graphene foam gives rise to beneficial electrochemical signatures within non-aqueous media

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 1, 期 19, 页码 5962-5972

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3ta10727b

关键词

-

向作者/读者索取更多资源

Freestanding three-dimensional (3D) graphene foam has been fabricated via a Chemical Vapour Deposition (CVD) methodology which has a macroscopic structure with microscopic (graphene) features. The 3D graphene macrostructure is characterised with SEM, EDX, XPS and Raman spectroscopy and is found to comprise pristine graphene (O/C of 0.05) which is in the range of mono-to few-layered graphene sheets and is thus termed quasi-graphene. This unique 3D graphene foam is electrochemically explored in both aqueous and non-aqueous solutions and compared to a freestanding 3D reticulated vitreous carbon (RVC) foam alternative. In aqueous solutions, the 3D graphene foam exhibits poor voltammetric responses. Contact angle measurements reveal the 3D graphene to exhibit a value of 120 degrees representing quasi-super-hydrophobicity. Consequently the freestanding 3D graphene foam is found to give rise to significantly improved voltammetric signatures in non-aqueous media (ionic liquids) over that of a freestanding 3D RVC alternative. The 3D graphene foam provides a promising and beneficial architecture over 2D pristine graphene due to its ease of use and macroscopic/microscopic structure, which will have wide implementation in the field of electrochemistry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据