4.4 Article

Circuit complexity for free fermions

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 7, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP07(2018)139

关键词

AdS-CFT Correspondence; Effective Field Theories

资金

  1. Government of Canada through Industry Canada
  2. Province of Ontario through the Ministry of Research Innovation
  3. Frymoyer fellowship
  4. Mebus fellowship
  5. National Science Foundation [PHY-1404204, NSF PHY17-48958]
  6. Natural Sciences and Engineering Research Council of Canada
  7. Simons Foundation through the It from Qubit collaboration

向作者/读者索取更多资源

We study circuit complexity for free fermionic field theories and Gaussian states. Our definition of circuit complexity is based on the notion of geodesic distance on the Lie group of special orthogonal transformations equipped with a right-invariant metric. After analyzing the differences and similarities to bosonic circuit complexity, we develop a comprehensive mathematical framework to compute circuit complexity between arbitrary fermionic Gaussian states. We apply this framework to the free Dirac field in four dimensions where we compute the circuit complexity of the Dirac ground state with respect to several classes of spatially unentangled reference states. Moreover, we show that our methods can also be applied to compute the complexity of excited energy eigenstates of the free Dirac field. Finally, we discuss the relation of our results to alternative approaches based on the Fubini-Study metric, the relevance to holography and possible extensions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据