4.4 Article

Electroweak logarithms in inclusive cross sections

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 8, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP08(2018)137

关键词

Deep Inelastic Scattering (Phenomenology); Jets

资金

  1. DOE [DE-SC0009919]
  2. ERC [ERC-STG-2015-677323]
  3. D-ITP consortium
  4. program of the Netherlands Organization for Scientific Research (NWO) - Dutch Ministry of Education, Culture and Science (OCW)
  5. Munich Institute for Astro- and Particle Physics (MIAPP) of the DFG cluster of excellence Origin and Structure of the Universe

向作者/读者索取更多资源

We develop the framework to perform all-orders resummation of electroweak logarithms of Q/M for inclusive scattering processes at energies Q much above the electroweak scale M. We calculate all ingredients needed at next-to-leading logarithmic (NLL) order and provide an explicit recipe to implement this for 2 -> 2 processes. PDF evolution including electroweak corrections, which lead to Sudakov double logarithms, is computed. If only the invariant mass of the final state is measured, all electroweak logarithms can be resummed by the PDF evolution, at least to LL. However, simply identifying a lepton in the final state requires the corresponding fragmentation function and introduces angular dependence through the exchange of soft gauge bosons. Furthermore, we show the importance of polarization effects for gauge bosons, due to the chiral nature of SU(2) - even the gluon distribution in an unpolarized proton becomes polarized at high scales due to electroweak effects. We justify our approach with a factorization analysis, finding that the objects entering the factorization theorem do not need to be SU(2) x U(1) gauge singlets, even though we perform the factorization and resummation in the symmetric phase. We also discuss a range of extensions, including jets and how to calculate the EW logarithms when you are fully exclusive in the central (detector) region and fully inclusive in the forward (beam) regions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据