4.4 Article

Bootstrapping an NMHV amplitude through three loops

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 10, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP10(2014)065

关键词

Scattering Amplitudes; Wilson; 't Hooft and Polyakov loops; Extended Supersymmetry

资金

  1. US Department of Energy [DE-AC02-76SF00515]

向作者/读者索取更多资源

We extend the hexagon function bootstrap to the next-to-maximally-helicity-violating (NMHV) configuration for six-point scattering in planar N = 4 super-Yang-Mills theory at three loops. Constraints from the (Q) over bar differential equation, from the operator product expansion (OPE) for Wilson loops with operator insertions, and from multi-Regge factorization, lead to a unique answer for the three-loop ratio function. The three-loop result also predicts additional terms in the OPE expansion, as well as the behavior of NMHV amplitudes in the multi-Regge limit at one higher logarithmic accuracy (NNLL) than was used as input. Both predictions are in agreement with recent results from the flux-tube approach. We also study the multi-particle factorization of multi-loop amplitudes for the first time. We find that the function controlling this factorization is purely logarithmic through three loops. We show that a function U, which is closely related to the parity-even part of the ratio function V, is remarkably simple; only five of the nine possible final entries in its symbol are non-vanishing. We study the analytic and numerical behavior of both the parity-even and parity-odd parts of the ratio function on simple lines traversing the space of cross ratios (u, v, w), as well as on a few two-dimensional planes. Finally, we present an empirical formula for V in terms of elements of the coproduct of the six-gluon MHV remainder function R-6 at one higher loop, which works through three loops for V (four loops for R-6).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据