4.5 Article

The normal chemistry of multiple stellar populations in the dense globular cluster NGC 6093 (M 80)

期刊

ASTRONOMY & ASTROPHYSICS
卷 578, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201525951

关键词

stars: abundances; stars: Population II; globular clusters: general; globular clusters: individual: NGC 6093 (M 80); stars: atmospheres

资金

  1. National Aeronautics and Space Administration
  2. National Science Foundation
  3. PRIN INAF
  4. PRIN MIUR

向作者/读者索取更多资源

We present the abundance analysis of 82 red giant branch stars in the dense, metal-poor globular cluster NGC 6093 (M 80), the largest sample of stars analysed in this way for this cluster. From high-resolution UVES spectra of 14 stars and intermediate resolution GIRAFFE spectra for the other stars we derived abundances of O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Ba, La, Ce, Pr, Nd, Sm, Eu. On our UVES metallicity scale the mean metal abundance of M 80 is [Fe/H] = -1.791 +/- 0.006 +/- 0.076 (+/- statistical +/- systematic error) with sigma = 0.023 (14 stars). M 80 shows star-to-star variations in proton-capture elements, and the extension of the Na-O anti-correlation perfectly fit the relations with (i) total cluster mass; (ii) horizontal branch morphology; and (iii) cluster concentration previously found by our group. The chemistry of multiple stellar populations in M80 does not look extreme. The cluster is also a representative of halo globular clusters concerning the pattern of a-capture and Fe-group elements. However we found that a significant contribution from the s-process is required to account for the distribution of neutron-capture elements. A minority of stars in M 80 seem to exhibit slightly enhanced abundances of s-process species, compatible with those observed in M 22 and NGC 1851, although further confirmation from larger samples is required.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据