4.4 Article

Lessons from the decoupling limit of Horava gravity

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 7, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP07(2010)014

关键词

Models of Quantum Gravity; Classical Theories of Gravity

资金

  1. Royal Society
  2. STFC
  3. Science and Technology Facilities Council [ST/G000417/1, ST/F007043/1] Funding Source: researchfish
  4. STFC [ST/G000417/1, ST/F007043/1] Funding Source: UKRI

向作者/读者索取更多资源

We consider the so-called healthy extension of Horava gravity in the limit where the Stuckelberg field decouples from the graviton. We verify the alleged strong coupling problem in this limit, under the assumption that no large dimensionless parameters are put in by hand. This follows from the fact that the dispersion relation for the Stuckelberg field does not have the desired z = 3 anisotropic scaling in the UV. To get the desired scaling and avoid strong coupling one has to introduce a low scale of Lorentz violation and retain some coupling between the graviton and the Stuckelberg field. We also make use of the foliation preserving symmetry to show how the Stuckelberg field couples to some violation of energy conservation. We source the Stuckelberg field using a point particle with a slowly varying mass and show that two such particles feel a constant attractive force. In this particular example, we see no Vainshtein effect, and violations of the Equivalence Principle. The latter is probably generic to other types of source and could potentially be used to place lower bounds on the scale of Lorentz violation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据