4.4 Article

Exact differential and corrected area law for stationary black holes in tunneling method

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 5, 页码 -

出版社

SPRINGER
DOI: 10.1088/1126-6708/2009/05/063

关键词

Black Holes; Classical Theories of Gravity

向作者/读者索取更多资源

We give a new and conceptually simple approach to obtain the first law of black hole thermodynamics from a basic thermodynamical property that entropy (S) for any stationary black hole is a state function implying that dS must be an exact differential. Using this property we obtain some conditions which are analogous to Maxwell's relations in ordinary thermodynamics. From these conditions we are able to explicitly calculate the semiclassical Bekenstein-Hawking entropy, considering the most general metric represented by the Kerr-Newman spacetime. We extend our method to find the corrected entropy of stationary black holes in (3+1) dimensions. For that we first calculate the corrected Hawking temperature considering both scalar particle and fermion tunneling beyond the semiclassical approximation. Using this corrected Hawking temperature we compute the corrected entropy, based on properties of exact differentials. The connection of the coefficient of the leading (logarithmic) correction with the trace anomaly of the stress tensor is established. We explicitly calculate this coefficient for stationary black holes with various metrics, emphasising the role of Komar integrals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据