4.5 Article

Dust as interstellar catalyst I. Quantifying the chemical desorption process

期刊

ASTRONOMY & ASTROPHYSICS
卷 585, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201525981

关键词

astrochemistry; solid state: refractory; solid state: volatile; ISM: abundances; ISM: molecules; molecular processes

资金

  1. French National PCMI program - CNRS
  2. DIM ACAV, program of the Region Ile de France
  3. Netherlands Organization for Scientific Research (NWO) [639.042.017]
  4. European Research Concil (ERC) [PALs 320620]

向作者/读者索取更多资源

Context. The presence of dust in the interstellar medium has profound consequences on the chemical composition of regions where stars are forming. Recent observations show that many species formed onto dust are populating the gas phase, especially in cold environments where UV- and cosmic-ray-induced photons do not account for such processes. Aims. The aim of this paper is to understand and quantify the process that releases solid species into the gas phase, the so-called chemical desorption process, so that an explicit formula can be derived that can be included in astrochemical models. Methods. We present a collection of experimental results of more than ten reactive systems. For each reaction, different substrates such as oxidized graphite and compact amorphous water ice were used. We derived a formula for reproducing the efficiencies of the chemical desorption process that considers the equipartition of the energy of newly formed products, followed by classical bounce on the surface. In part II of this study we extend these results to astrophysical conditions. Results. The equipartition of energy correctly describes the chemical desorption process on bare surfaces. On icy surfaces, the chemical desorption process is much less efficient, and a better description of the interaction with the surface is still needed. Conclusions. We show that the mechanism that directly transforms solid species into gas phase species is efficient for many reactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据