4.5 Article

Particle swarm with radial basis function surrogates for expensive black-box optimization

期刊

JOURNAL OF COMPUTATIONAL SCIENCE
卷 5, 期 1, 页码 12-23

出版社

ELSEVIER
DOI: 10.1016/j.jocs.2013.07.004

关键词

Particle swarm optimization; Surrogate model; Radial basis function; Expensive function; Groundwater bioremediation; Watershed model calibration

向作者/读者索取更多资源

This paper develops the OPUS (Optimization by Particle swarm Using Surrogates) framework for expensive black-box optimization. In each iteration, OPUS considers multiple trial positions for each particle in the swarm and uses a surrogate model to identify the most promising trial position. Moreover, the current overall best position is refined by finding the global minimum of the surrogate in the neighborhood of that position. OPUS is implemented using an RBF surrogate and the resulting OPUS-RBF algorithm is applied to a 36-D groundwater bioremediation problem, a 14-D watershed calibration problem, and ten mostly 30-0 test problems. OPUS-RBF is compared with a standard PSO, CMA-ES, two other surrogate-assisted PSO algorithms, and an RBF-assisted evolution strategy. The numerical results suggest that OPUS-RBF is promising for expensive black-box optimization. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据