4.5 Article

MORESANE: MOdel REconstruction by Synthesis-ANalysis Estimators A sparse deconvolution algorithm for radio interferometric imaging

期刊

ASTRONOMY & ASTROPHYSICS
卷 576, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201424602

关键词

methods: numerical; methods: data analysis; techniques: image processing; techniques: interferometric

资金

  1. Agence Nationale de la Recherche [ANR-09-JCJC-0001-01, ANR-14-CE23-0004-01]
  2. PHC PROTEA programme [29732YK]
  3. joint doctoral program region PACA-OCA
  4. Thales Alenia Space
  5. Agence Nationale de la Recherche (ANR) [ANR-14-CE23-0004] Funding Source: Agence Nationale de la Recherche (ANR)

向作者/读者索取更多资源

Context. Recent years have been seeing huge developments of radio telescopes and a tremendous increase in their capabilities (sensitivity, angular and spectral resolution, field of view, etc.). Such systems make designing more sophisticated techniques mandatory not only for transporting, storing, and processing this new generation of radio interferometric data, but also for restoring the astrophysical information contained in such data. Aims. In this paper we present a new radio deconvolution algorithm named MORESANE and its application to fully realistic simulated data of MeerKAT, one of the SKA precursors. This method has been designed for the difficult case of restoring diffuse astronomical sources that are faint in brightness, complex in morphology, and possibly buried in the dirty beam's side lobes of bright radio sources in the field. Methods. MORESANE is a greedy algorithm that combines complementary types of sparse recovery methods in order to reconstruct the most appropriate sky model from observed radio visibilities. A synthesis approach is used for reconstructing images, in which the synthesis atoms representing the unknown sources are learned using analysis priors. We applied this new deconvolution method to fully realistic simulations of the radio observations of a galaxy cluster and of an HII region in M31. Results. We show that MORESANE is able to efficiently reconstruct images composed of a wide variety of sources (compact point-like objects, extended tailed radio galaxies, low-surface brightness emission) from radio interferometric data. Comparisons with the state of the art algorithms indicate that MORESANE provides competitive results in terms of both the total flux/surface brightness conservation and fidelity of the reconstructed model. MORESANE seems particularly well suited to recovering diffuse and extended sources, as well as bright and compact radio sources known to be hosted in galaxy clusters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据