4.5 Article

Stability of resonant configurations during the migration of planets and constraints on disk-planet interactions

期刊

ASTRONOMY & ASTROPHYSICS
卷 579, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201526285

关键词

celestial mechanics; planets and satellites: dynamical evolution and stability; planet-disk interactions

资金

  1. Swiss National Science Foundation
  2. PNP-CNRS
  3. PNP-CNRS, CS of the Paris Observatory
  4. SNSF
  5. CIDMA [UID/MAT/04106/2013]
  6. [PICS05998]

向作者/读者索取更多资源

We study the stability of mean-motion resonances (MMR) between two planets during their migration in a protoplanetary disk. We use an analytical model of resonances and describe the effect of the disk by a migration timescale (T-m,T-i) and an eccentricity damping timescale (T-e,T-i) for each planet (i = 1; 2 for the inner and outer planets, respectively). We show that the resonant configuration is stable if T-e,T-1/T-e,T-2 > (e(1)/e(2))(2). This general result can be used to put constraints on specific models of disk-planet interactions. For instance, using classical prescriptions for type-I migration, we show that when the angular momentum deficit (AMD) of the inner orbit is greater than the outer's orbit AMD, resonant systems must have a locally inverted disk density profile to stay locked in resonance during the migration. This inversion is very atypical of type-I migration and our criterion can thus provide an evidence against classical type-I migration. That is indeed the case for the Jupiter-mass resonant systems HD 60532b, c (3: 1 MMR), GJ 876b, c (2: 1 MMR), and HD 45364b, c (3: 2 MMR). This result may be evidence of type-II migration (gap-opening planets), which is compatible with the high masses of these planets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据