4.7 Article

Model-Based Prognostics With Concurrent Damage Progression Processes

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSMCA.2012.2207109

关键词

Centrifugal pumps; model-based prognostics; particle filters; variance control

资金

  1. NASA Fault Detection, Isolation, and Recovery (FDIR) project
  2. NASA System-wide Safety and Assurance Technologies (SSAT) project

向作者/读者索取更多资源

Model-based prognostics approaches rely on physics-based models that describe the behavior of systems and their components. These models must account for the several different damage processes occurring simultaneously within a component. Each of these damage and wear processes contributes to the overall component degradation. We develop a model-based prognostics methodology that consists of a joint state-parameter estimation problem, in which the state of a system along with parameters describing the damage progression are estimated, followed by a prediction problem, in which the joint state-parameter estimate is propagated forward in time to predict end of life and remaining useful life. The state-parameter estimate is computed using a particle filter and is represented as a probability distribution, allowing the prediction of end of life and remaining useful life within a probabilistic framework that supports uncertainty management. We also develop a novel variance control algorithm that maintains an uncertainty bound around the unknown parameters to limit the amount of estimation uncertainty and, consequently, reduce prediction uncertainty. We construct a detailed physics-based model of a centrifugal pump that includes damage progression models, to which we apply our model-based prognostics algorithm. We illustrate the operation of the prognostic solution with a number of simulation-based experiments and demonstrate the performance of the approach when multiple damage mechanisms are active.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据