4.7 Article

Stochastic Performance Assessment and Sizing for a Hybrid Power System of Solar/Wind/Energy Storage

期刊

IEEE TRANSACTIONS ON SUSTAINABLE ENERGY
卷 5, 期 2, 页码 363-371

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSTE.2013.2288083

关键词

Load shifting strategy; sequential Monte Carlo simulation (SMCS); stochastic modeling

向作者/读者索取更多资源

This paper proposes a stochastic framework for optimal sizing and reliability analysis of a hybrid power system including the renewable resources and energy storage system. Uncertainties of wind power, photovoltaic (PV) power, and load are stochastically modeled using autoregressive moving average (ARMA). A pattern search-based optimization method is used in conjunction with a sequential Monte Carlo simulation (SMCS) to minimize the system cost and satisfy the reliability requirements. The SMCS simulates the chronological behavior of the system and calculates the reliability indices from a series of simulated experiments. Load shifting strategies are proposed to provide some flexibility and reduce the mismatch between the renewable generation and heating ventilation and air conditioning loads in a hybrid power system. Different percentages of load shifting and their potential impacts on the hybrid power system reliability/cost analysis are evaluated. Using a compromise-solution method, the best compromise between the reliability and cost is realized for the hybrid power system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据