4.7 Article

Using Data-Mining Approaches for Wind Turbine Power Curve Monitoring: A Comparative Study

期刊

IEEE TRANSACTIONS ON SUSTAINABLE ENERGY
卷 4, 期 3, 页码 671-679

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSTE.2013.2241797

关键词

Condition monitoring; data mining; fuzzy neural networks; machine learning; neural networks; power generation; power system faults; signal analysis; wind energy

向作者/读者索取更多资源

Four data-mining approaches for wind turbine power curve monitoring are compared. Power curve monitoring can be applied to evaluate the turbine power output and detect deviations, causing financial loss. In this research, cluster center fuzzy logic, neural network, and kappa-nearest neighbor models are built and their performance compared against literature. Recently developed adaptive neuro-fuzzy-interference system models are set up and their performance compared with the other models, using the same data. Literature models often neglect the influence of the ambient temperature and the wind direction. The ambient temperature can influence the power output up to 20%. Nearby obstacles can lower the power output for certain wind directions. The approaches proposed in literature and the ANFIS models are compared by using wind speed only and two additional inputs. The comparison is based on the mean absolute error, root mean squared error, mean absolute percentage error, and standard deviation using data coming from three pitch regulated turbines rating 2 MW each. The ability to highlight performance deviations is investigated by use of real measurements. The comparison shows the decrease of error rates and of the ANFIS models when taking into account the two additional inputs and the ability to detect faults earlier.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据