4.5 Article

Resolving the stellar activity of the Mira AB binary with ALMA

期刊

ASTRONOMY & ASTROPHYSICS
卷 577, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201526186

关键词

stars: AGB and post-AGB; stars: atmospheres; binaries: close; stars: individual: Mira AB

资金

  1. Marie Curie Career Integration Grant [321691]
  2. Swedish Research Council (VR)
  3. European Research Council through ERC consolidator grant [614264]

向作者/读者索取更多资源

Aims. We present the size, shape, and flux densities at millimeter continuum wavelengths, based on ALMA science verification observations in Band 3 (similar to 94.6 GHz) and Band 6 (similar to 228.7 GHz), from the binary Mira A (o Ceti) and Mira B. Methods. The Mira AB system was observed with ALMA at a spatial resolution down to similar to 25 mas. The extended atmosphere of Mira A and the wind around Mira B sources were resolved, and we derived the sizes of Mira A and of the ionized region around Mira B. The spectral indices within Band 3 (between 89-100 GHz) and between Bands 3 and 6 were also derived. Results. The spectral index of Mira A is found to change from 1.71 +/- 0.05 within Band 3 to 1.54 +/- 0.04 between Bands 3 and 6. The spectral index of Mira B is 1.3 +/- 0.2 in Band 3, in good agreement with measurements at longer wavelengths; however, it rises to 1.72 +/- 0.11 between the bands. For the first time, the extended atmosphere of a star is resolved at these frequencies, and for Mira A the diameter is similar to 3.8 x 3.2 AU in Band 3 (with brightness temperature T-b similar to 5300 K) and similar to 4.0 x 3.6 AU in Band 6 (T-b similar to 2500 K). Additionally, a bright hotspot similar to 0.4 AU, with T-b similar to 10 000 K, is found on the stellar disk of Mira A. The size of the ionized region around the accretion disk of Mira B is found to be similar to 2.4 AU. Conclusions. The emission around Mira B is consistent with emission from a partially ionized wind of gravitationally bound material from Mira A close to the accretion disk of Mira B. The Mira A atmosphere does not fully match predictions with brightness temperatures in Band 3 significantly higher than expected, potentially owing to shock heating. The hotspot is very likely due to magnetic activity and could be related to the previously observed X-ray flare of Mira A.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据