4.6 Article

An Adaptive Differential Evolution Algorithm for Global Optimization in Dynamic Environments

期刊

IEEE TRANSACTIONS ON CYBERNETICS
卷 44, 期 6, 页码 966-978

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCYB.2013.2278188

关键词

Differential evolution; diversity; double mutation strategy; dynamic optimization problems

向作者/读者索取更多资源

This article proposes a multipopulation-based adaptive differential evolution (DE) algorithm to solve dynamic optimization problems (DOPs) in an efficient way. The algorithm uses Brownian and adaptive quantum individuals in conjunction with the DE individuals to maintain the diversity and exploration ability of the population. This algorithm, denoted as dynamic DE with Brownian and quantum individuals (DDEBQ), uses a neighborhood-driven double mutation strategy to control the perturbation and thereby prevents the algorithm from converging too quickly. In addition, an exclusion rule is used to spread the subpopulations over a larger portion of the search space as this enhances the optima tracking ability of the algorithm. Furthermore, an aging mechanism is incorporated to prevent the algorithm from stagnating at any local optimum. The performance of DDEBQ is compared with several state-of-the-art evolutionary algorithms using a suite of benchmarks from the generalized dynamic benchmark generator (GDBG) system used in the competition on evolutionary computation in dynamic and uncertain environments, held under the 2009 IEEE Congress on Evolutionary Computation (CEC). The simulation results indicate that DDEBQ outperforms other algorithms for most of the tested DOP instances in a statistically meaningful way.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据