4.6 Article

Classification of Finger Movements for the Dexterous Hand Prosthesis Control With Surface Electromyography

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JBHI.2013.2249590

关键词

Electromyography; linear discriminant analysis (LDA); pattern recognition; prosthetic hand

资金

  1. Ministry of higher Education and Scientific Research, Iraq

向作者/读者索取更多资源

A method for the classification of finger movements for dexterous control of prosthetic hands is proposed. Previous research was mainly devoted to identify hand movements as these actions generate strong electromyography (EMG) signals recorded from the forearm. In contrast, in this paper, we assess the use of multichannel surface electromyography (sEMG) to classify individual and combined finger movements for dexterous prosthetic control. sEMG channels were recorded from ten intact-limbed and six below-elbow amputee persons. Offline processing was used to evaluate the classification performance. The results show that high classification accuracies can be achieved with a processing chain consisting of time domain-autoregression feature extraction, orthogonal fuzzy neighborhood discriminant analysis for feature reduction, and linear discriminant analysis for classification. We show that finger and thumb movements can be decoded accurately with high accuracy with latencies as short as 200 ms. Thumb abduction was decoded successfully with high accuracy for six amputee persons for the first time. We also found that subsets of six EMG channels provide accuracy values similar to those computed with the full set of EMG channels (98% accuracy over ten intact-limbed subjects for the classification of 15 classes of different finger movements and 90% accuracy over six amputee persons for the classification of 12 classes of individual finger movements). These accuracy values are higher than previous studies, whereas we typically employed half the number of EMG channels per identified movement.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据