4.4 Article

Aging effects on DNA methylation modules in human brain and blood tissue

期刊

GENOME BIOLOGY
卷 13, 期 10, 页码 -

出版社

BIOMED CENTRAL LTD
DOI: 10.1186/gb-2012-13-10-r97

关键词

-

资金

  1. [R01NS058980]
  2. [R01MH090553]
  3. [P50CA092131]
  4. NATIONAL CANCER INSTITUTE [P50CA092131] Funding Source: NIH RePORTER
  5. NATIONAL INSTITUTE OF MENTAL HEALTH [R01MH090553] Funding Source: NIH RePORTER
  6. NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE [R01NS058980] Funding Source: NIH RePORTER
  7. NATIONAL INSTITUTE ON DRUG ABUSE [R01DA028526] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Background: Several recent studies reported aging effects on DNA methylation levels of individual CpG dinucleotides. But it is not yet known whether aging-related consensus modules, in the form of clusters of correlated CpG markers, can be found that are present in multiple human tissues. Such a module could facilitate the understanding of aging effects on multiple tissues. Results: We therefore employed weighted correlation network analysis of 2,442 Illumina DNA methylation arrays from brain and blood tissues, which enabled the identification of an age-related co-methylation module. Module preservation analysis confirmed that this module can also be found in diverse independent data sets. Biological evaluation showed that module membership is associated with Polycomb group target occupancy counts, CpG island status and autosomal chromosome location. Functional enrichment analysis revealed that the aging-related consensus module comprises genes that are involved in nervous system development, neuron differentiation and neurogenesis, and that it contains promoter CpGs of genes known to be down-regulated in early Alzheimer's disease. A comparison with a standard, non-module based meta-analysis revealed that selecting CpGs based on module membership leads to significantly increased gene ontology enrichment, thus demonstrating that studying aging effects via consensus network analysis enhances the biological insights gained. Conclusions: Overall, our analysis revealed a robustly defined age-related co-methylation module that is present in multiple human tissues, including blood and brain. We conclude that blood is a promising surrogate for brain tissue when studying the effects of age on DNA methylation profiles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据