4.4 Article

Dynamics of mitochondrial heteroplasmy in three families investigated via a repeatable re-sequencing study

期刊

GENOME BIOLOGY
卷 12, 期 6, 页码 -

出版社

BMC
DOI: 10.1186/gb-2011-12-6-r59

关键词

-

资金

  1. NIH [GM07226405S2, HG004909, HG005133, HG005542]
  2. Beckman Foundation
  3. NSF [DBI 0543285]
  4. Penn State University
  5. Huck Institutes for the Life Sciences
  6. Emory University
  7. Pennsylvania Department of Health
  8. Direct For Biological Sciences
  9. Div Of Biological Infrastructure [0850103] Funding Source: National Science Foundation
  10. Direct For Computer & Info Scie & Enginr
  11. Office of Advanced Cyberinfrastructure (OAC) [821527] Funding Source: National Science Foundation

向作者/读者索取更多资源

Background: Originally believed to be a rare phenomenon, heteroplasmy - the presence of more than one mitochondrial DNA (mtDNA) variant within a cell, tissue, or individual - is emerging as an important component of eukaryotic genetic diversity. Heteroplasmies can be used as genetic markers in applications ranging from forensics to cancer diagnostics. Yet the frequency of heteroplasmic alleles may vary from generation to generation due to the bottleneck occurring during oogenesis. Therefore, to understand the alterations in allele frequencies at heteroplasmic sites, it is of critical importance to investigate the dynamics of maternal mtDNA transmission. Results: Here we sequenced, at high coverage, mtDNA from blood and buccal tissues of nine individuals from three families with a total of six maternal transmission events. Using simulations and re-sequencing of clonal DNA, we devised a set of criteria for detecting polymorphic sites in heterogeneous genetic samples that is resistant to the noise originating from massively parallel sequencing technologies. Application of these criteria to nine human mtDNA samples revealed four heteroplasmic sites. Conclusions: Our results suggest that the incidence of heteroplasmy may be lower than estimated in some other recent re-sequencing studies, and that mtDNA allelic frequencies differ significantly both between tissues of the same individual and between a mother and her offspring. We designed our study in such a way that the complete analysis described here can be repeated by anyone either at our site or directly on the Amazon Cloud. Our computational pipeline can be easily modified to accommodate other applications, such as viral re-sequencing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据