4.4 Article

Human-macaque comparisons illuminate variation in neutral substitution rates

期刊

GENOME BIOLOGY
卷 9, 期 4, 页码 -

出版社

BMC
DOI: 10.1186/gb-2008-9-4-r76

关键词

-

资金

  1. NHGRI NIH HHS [R01 HG002238, 5K01HG003315, HG02238, K01 HG003315] Funding Source: Medline
  2. NIDDK NIH HHS [DK65806, R01 DK065806, R56 DK065806] Funding Source: Medline
  3. NIGMS NIH HHS [R01 GM072264, R01-GM072264] Funding Source: Medline
  4. NATIONAL HUMAN GENOME RESEARCH INSTITUTE [K01HG003315, R01HG002238] Funding Source: NIH RePORTER
  5. NATIONAL INSTITUTE OF DIABETES AND DIGESTIVE AND KIDNEY DISEASES [R01DK065806, R56DK065806] Funding Source: NIH RePORTER
  6. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM072264] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Background: The evolutionary distance between human and macaque is particularly attractive for investigating local variation in neutral substitution rates, because substitutions can be inferred more reliably than in comparisons with rodents and are less influenced by the effects of current and ancient diversity than in comparisons with closer primates. Here we investigate the human-macaque neutral substitution rate as a function of a number of genomic parameters. Results: Using regression analyses we find that male mutation bias, male ( but not female) recombination rate, distance to telomeres and substitution rates computed from orthologous regions in mouse-rat and dog-cow comparisons are prominent predictors of the neutral rate. Additionally, we demonstrate that the previously observed biphasic relationship between neutral rate and GC content can be accounted for by properly combining rates at CpG and non-CpG sites. Finally, we find the neutral rate to be negatively correlated with the densities of several classes of computationally predicted functional elements, and less so with the densities of certain classes of experimentally verified functional elements. Conclusion: Our results suggest that while female recombination may be mainly responsible for driving evolution in GC content, male recombination may be mutagenic, and that other mutagenic mechanisms acting near telomeres, and mechanisms whose effects are shared across mammalian genomes, play significant roles. We also have evidence that the nonlinear increase in rates at high GC levels may be largely due to hyper-mutability of CpG dinucleotides. Finally, our results suggest that the performance of conservation-based prediction methods can be improved by accounting for neutral rates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据