4.7 Article

Genome-Wide Association Studies Reveal Genetic Variation and Candidate Genes of Drought Stress Related Traits in Cotton (Gossypium hirsutum L.)

期刊

FRONTIERS IN PLANT SCIENCE
卷 9, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2018.01276

关键词

upland cotton; drought stress; genome-wide association study; single nucleotide polymorphism (SNP); RNA-sequencing

资金

  1. Fundamental Research Funds for the Central Universities [KYYJ201601, KYYJ201701]
  2. six talent peaks project in Jiangsu province [2015-NY-002]
  3. Qing Lan Project for Science and Technology Innovation Team in Jiangsu Province [6]
  4. Jiangsu Collaborative Innovation Center for Modern Crop Production project [10]

向作者/读者索取更多资源

Cotton is an important industrial crop worldwide and upland cotton (Gossypium hirsutum L.) is most widely cultivated in the world. Due to ever-increasing water deficit, drought stress brings a major threat to cotton production. Thus, it is important to reveal the genetic basis under drought stress and develop drought tolerant cotton cultivars. To address this issue, in present study, 319 upland cotton accessions were genotyped by 55,060 single nucleotide polymorphisms (SNPs) from high-density CottonSNP80K array and phenotyped nine drought tolerance related traits. The two datasets were used to identify quantitative trait nucleotides (QTNs) for the above nine traits using multi-locus random-SNP-effect mixed linear model method. As a result, a total of 20 QTNs distributed on 16 chromosomes were found to be significantly associated with six drought tolerance related traits. Of the 1,326 genes around the 20 QTNs, 205 were induced after drought stress treatment, and 46 were further mapped to Gene ontology (GO) term response to stress. Taken genome-wide association study (GWAS) analysis, RNA-seq data and qRT-PCR verification, four genes, RD2 encoding a response to desiccation 2 protein, HAT22 encoding a homeobox-leucine zipper protein, PIP2 encoding a plasma membrane intrinsic protein 2, and PP2C encoding a protein phosphatase 2C, were proposed to be potentially important for drought tolerance in cotton. These results will deepen our understanding of the genetic basis of drought stress tolerance in cotton and provide candidate markers to accelerate the development of drought-tolerant cotton cultivars.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据