4.7 Article

The plant ionome revisited by the nutrient balance concept

期刊

FRONTIERS IN PLANT SCIENCE
卷 4, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2013.00039

关键词

compositional data analysis; ionome classification; nutrient interactions; numerical biases; isometric log-ratio; plant nutrition

资金

  1. Natural Sciences and Engineering Council of Canada [CG-2254, CRDPJ 385199-09]
  2. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)
  3. Brazilian Coordinacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)
  4. Spanish Ministry of Education and Science [MTM2009-13272, C5D2006-00032]
  5. Agencia de Gestio d'Ajuts Universitaris i de Recerca of the Generalitat de Catalunya [20095GR424]

向作者/读者索取更多资源

Tissue analysis is commonly used in ecology and agronomy to portray plant nutrient signatures. Nutrient concentration data, or ionomes, belong to the compositional data class, i.e., multivariate data that are proportions of some whole, hence carrying important numerical properties. Statistics computed across raw or ordinary log-transformed nutrient data are intrinsically biased, hence possibly leading to wrong inferences. Our objective was to present a sound and robust approach based on a novel nutrient balance concept to classify plant ionomes. We analyzed leaf N, R K, Ca, and Mg of two wild and six domesticated fruit species from Canada, Brazil, and New Zealand sampled during reproductive stages. Nutrient concentrations were (1) analyzed without transformation, (2) ordinary log-transformed as commonly but incorrectly applied in practice, (3) additive log-ratio (air) transformed as surrogate to stoichiometric rules, and (4) converted to isometric log-ratios OH arranged as sound nutrient balance variables. Raw concentration and ordinary log transformation both led to biased multivariate analysis due to redundancy between interacting nutrients. The air- and ilr-transformed data provided unbiased discriminant analyses of plant ionomes, where wild and domesticated species formed distinct groups and the ionomes of species and cultivars were differentiated without numerical bias. The ilr nutrient balance concept is preferable to air, because the ilr technique projects the most important interactions between nutrients into a convenient Euclidean space.This novel numerical approach allows rectifying historical biases and supervising phenotypic plasticity in plant nutrition studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据