4.7 Review

The road to micronutrient biofortification of rice: progress and prospects

期刊

FRONTIERS IN PLANT SCIENCE
卷 4, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2013.00015

关键词

biofortification; biosafety; iron; micronutrient transport; Oryza sativa L.; zinc

资金

  1. Ministry of Agriculture, Forestry and Fisheries of Japan [IP-5003]
  2. Grants-in-Aid for Scientific Research [12J07373, 22120003, 25650090] Funding Source: KAKEN

向作者/读者索取更多资源

Biofortification (increasing the contents of vitamins and minerals through plant breeding or biotechnology) of food crops with micronutrient elements has the potential to combat widespread micronutrient deficiencies in humans. Rice (Oryza sativa L.) feeds more than half of the world's population and is used as a staple food in many parts of Asia. As in other plants, micronutrient transport in rice is controlled at several stages, including uptake from soil, transport from root to shoot, careful control of subcellular micronutrient transport, and finally, and most importantly, transport to seeds. To enhance micronutrient accumulation in rice seeds, we need to understand and carefully regulate all of these processes. During the last decade, numerous attempts such as increasing the contents/expression of genes encoding metal chelators (mostly phytosiderophores) and metal transporters; Fe storage protein ferritin and phytase were successfully undertaken to significantly increase the micronutrient content of rice. However, despite the rapid progress in biofortification of rice, the commercialization of biofortified crops has not yet been achieved. Here, we briefly review the progress in biofortification of rice with micronutrient elements (Fe, Zn, and Mn) and discuss future prospects to mitigate widespread micronutrient deficiencies in humans.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据