4.6 Article

Elevated CO2 and Warming Altered Grassland Microbial Communities in Soil Top-Layers

期刊

FRONTIERS IN MICROBIOLOGY
卷 9, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmicb.2018.01790

关键词

elevated carbon dioxide; warming; soil microbial community; Prairie Heating and CO2 Enrichment (PHACE) experiment; functional genes; grassland ecosystem

资金

  1. National Key Research and Development Program [2016YFC0500702]
  2. Strategic Priority Research Program of the Chinese Academy of Sciences (CAS) [XDB15010302]
  3. China Postdoctoral Science Foundation [2016M601145]
  4. Natural Science Foundation of Liaoning Province of China [201602361]

向作者/读者索取更多资源

As two central issues of global climate change, the continuous increase of both atmospheric CO2 concentrations and global temperature has profound effects on various terrestrial ecosystems. Microbial communities play pivotal roles in these ecosystems by responding to environmental changes through regulation of soil biogeochemical processes. However, little is known about the effect of elevated CO2 (eCO(2)) and global warming on soil microbial communities, especially in semiarid zones. We used a functional gene array (GeoChip 3.0) to measure the functional gene composition, structure, and metabolic potential of soil microbial communities under warming, eCO(2), and eCO(2) + warming conditions in a semiarid grassland. The results showed that the composition and structure of microbial communities was dramatically altered by multiple climate factors, including elevated CO2 and increased temperature. Key functional genes, those involved in carbon (C) degradation and fixation, methane metabolism, nitrogen (N) fixation, denitrification and N mineralization, were all stimulated under eCO(2), while those genes involved in denitrification and ammonification were inhibited under warming alone. The interaction effects of eCO(2) and warming on soil functional processes were similar to eCO(2) alone, whereas some genes involved in recalcitrant C degradation showed no significant changes. In addition, canonical correspondence analysis and Mantel test results suggested that NO3-N and moisture significantly correlated with variations in microbial functional genes. Overall, this study revealed the possible feedback of soil microbial communities to multiple climate change factors by the suppression of N cycling under warming, and enhancement of C and N cycling processes under either eCO(2) alone or in interaction with warming. These findings may enhance our understanding of semiarid grassland ecosystem responses to integrated factors of global climate change.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据