4.6 Article

A mathematical model of metabolism and regulation provides a systems-level view of how Escherichia coli responds to oxygen

期刊

FRONTIERS IN MICROBIOLOGY
卷 5, 期 -, 页码 -

出版社

FRONTIERS RESEARCH FOUNDATION
DOI: 10.3389/fmicb.2014.00124

关键词

Escherichia coli; mathematical modeling; metabolism; regulation; respiration; fermentation; thermokinetic modeling

资金

  1. ERASysbio SysMO (Systems Biology of Microorganisms) initiative
  2. Biotechnology and Biological Sciences Research Council (BBSRC)
  3. Bundesministerium fur Bildung und Forschung (BMBF)
  4. Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)
  5. Ministerium fur Wissenschaft, Forschung und Kunst Baden-Wurttemberg within the Ideenwettbewerb Biotechnologie und Medizintechnik Baden-Wurttemberg
  6. BBSRC [BB/I004122/1] Funding Source: UKRI
  7. Biotechnology and Biological Sciences Research Council [BB/I004122/1] Funding Source: researchfish

向作者/读者索取更多资源

The efficient redesign of bacteria for biotechnological purposes, such as biofuel production, waste disposal or specific biocatalytic functions, requires a quantitative systems-level understanding of energy supply, carbon, and redox metabolism. The measurement of transcript levels, metabolite concentrations and metabolic fluxes per se gives an incomplete picture. An appreciation of the interdependencies between the different measurement values is essential for systems-level understanding. Mathematical modeling has the potential to provide a coherent and quantitative description of the interplay between gene expression, metabolite concentrations, and metabolic fluxes. Escherichia coli undergoes major adaptations in central metabolism when the availability of oxygen changes. Thus, an integrated description of the oxygen response provides a benchmark of our understanding of carbon, energy, and redox metabolism. We present the first comprehensive model of the central metabolism of E. coli that describes steady-state metabolism at different levels of oxygen availability. Variables of the model are metabolite concentrations, gene expression levels, transcription factor activities, metabolic fluxes, and biomass concentration. We analyze the model with respect to the production capabilities of central metabolism of E. coli. In particular, we predict how precursor and biomass concentration are affected by product formation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据