4.6 Article

Genomic and physiological analysis of carbon storage in the verrucomicrobial methanotroph Ca. Methylacidiphilum funnariolicunn SolV

期刊

FRONTIERS IN MICROBIOLOGY
卷 3, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmicb.2012.00345

关键词

Methylacidiphilum; methane; Verrucomicrobia; carbon storage; glycogen; survival

资金

  1. Mosaic grant [62000583]
  2. VENT grant [863.09.009]
  3. Netherlands Organization for Scientific Research NWO
  4. ERC grant [2322937]

向作者/读者索取更多资源

Candidatus Methylacidiphilum fumariolicum SolV is a verrucomicrobial methanotroph that can grow in extremely acidic environments at high temperature. Strain SolV fixes carbon dioxide (CO2) via the Calvin Benson Bassham cycle with methane as energy source, a trait so far very unusual in methanotrophs. In this study, the ability of Ca. M. fumariolicum to store carbon was explored by genome analysis, physiological studies, and electron microscopy. When cell cultures were depleted for nitrogen, glycogen storage was clearly observed in cytoplasmic storage vesicles by electron microscopy. After cessation of growth, the dry weight kept increasing and the bacteria were filled up almost entirely by glycogen. This was confirmed by biochemical analysis, which showed that glycogen accumulated to 36% of the total dry weight of the cells. When methane was removed from the culture, this glycogen was consumed within 47 days. During the period of glycogen consumption, the bacteria kept their viability high when compared to bacteria without glycogen (from cultures growing exponentially).The latter bacteria lost viability already after a few days when starved for methane. Analysis of the draft genome of Ca. M. fumariolicum SolV demonstrated that all known genes for glycogen storage and degradation were present and also transcribed. Phylogenetic analysis of these genes showed that they form a separate cluster with Ca. M. infernorum V4, and the most closely related other sequences only have an identity of 40%. This study presents the first physiological evidence of glycogen storage in the phylum Verrucomicrobia and indicates that carbon storage is important for survival at times of methane starvation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据