4.8 Article

Human premotor areas parse sequences into their spatial and temporal features

期刊

ELIFE
卷 3, 期 -, 页码 -

出版社

ELIFE SCIENCES PUBLICATIONS LTD
DOI: 10.7554/eLife.03043

关键词

-

类别

资金

  1. Wellcome Trust [098881/Z/12/Z]
  2. European Commission Marie Curie Initial Training Network
  3. Wellcome Trust [098881/Z/12/Z] Funding Source: Wellcome Trust

向作者/读者索取更多资源

Skilled performance is characterized by precise and flexible control of movement sequences in space and time. Recent theories suggest that integrated spatio-temporal trajectories are generated by intrinsic dynamics of motor and premotor networks. This contrasts with behavioural advantages that emerge when a trained spatial or temporal feature of sequences is transferred to a new spatio-temporal combination arguing for independent neural representations of these sequence features. We used a new fMRI pattern classification approach to identify brain regions with independent vs integrated representations. A distinct regional dissociation within motor areas was revealed: whereas only the contralateral primary motor cortex exhibited unique patterns for each spatio-temporal sequence combination, bilateral premotor areas represented spatial and temporal features independently of each other. These findings advocate a unique function of higher motor areas for flexible recombination and efficient encoding of complex motor behaviours.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据