4.6 Article

Mapping the Electrical Properties of ZnO-Based Transparent Conductive Oxides Grown at Room Temperature and Improved by Controlled Postdeposition Annealing

期刊

ADVANCED ELECTRONIC MATERIALS
卷 2, 期 1, 页码 -

出版社

WILEY
DOI: 10.1002/aelm.201500287

关键词

-

资金

  1. Fundacao para a Ciencia e a Tecnologia (FCT) [EXCL/CTM-NAN/0201/2012, PEst-C/CTM/LA0025/2013-14, PTDC/CTM-ENE/2514/2012]
  2. European project CEOPS (FP7 Grant) [309984]
  3. European project i-Flexis (FP7-ICT Grant) [611070]
  4. European project All-Oxide-Photovoltaics (FP7-FET Grant) [309018]
  5. FCT
  6. MIT-Portugal [SFRH/BD/33978/2009]
  7. EU [629370]
  8. Fundação para a Ciência e a Tecnologia [PTDC/CTM-ENE/2514/2012] Funding Source: FCT

向作者/读者索取更多资源

Indium tin oxide (ITO) is the current standard state-of-the-art transparent conductive oxide (TCO), given its remarkable optical and electrical properties. However, the scarcity of indium carries an important drawback for the long-term application due to its intensive use in many optoelectronic devices such as displays, solar cells, and interactive systems. Zinc oxide-based TCOs can be a cost-effective and viable alternative, but the limitations imposed by their transmittance versus resistivity tradeoff still keep them behind ITO. In this work, an in-depth study of the structural and compositional material changes induced by specific postannealing treatments is presented, based on aluminum zinc oxide (AZO) and hydrogenated AZO (AZO:H) thin films grown by rf-magnetron sputtering at room temperature that allows an extensive understanding of the films' electrical/structural changes and the ability to tune their physical parameters to yield increasingly better performances, which put them in line with the best ITO quality standards. The present investigation comprises results of thermal annealing at atmospheric pressure, vacuum, forming gas, H-2 and Ar atmospheres and plasmas. Overall the study being performed leads to a decrease in resistivity above 40%, reaching rho = 3 x 10(-4) Omega cm, with an average optical transmittance in the visible region around 88%. Such results are equivalent to the properties of state-of-the-art ITO.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据