4.1 Article

Nuclear-weighted X-ray maximum entropy method - NXMEM

期刊

出版社

INT UNION CRYSTALLOGRAPHY
DOI: 10.1107/S2053273314024103

关键词

-

资金

  1. Danish National Research Foundation (Center for Materials Crystallography, DNRF93)

向作者/读者索取更多资源

Subtle structural features such as disorder and anharmonic motion may be accurately characterized from nuclear density distributions (NDDs). As a viable alternative to neutron diffraction, this paper introduces a new approach named the nuclear-weighted X-ray maximum entropy method (NXMEM) for reconstructing pseudo NDDs. It calculates an electron-weighted nuclear density distribution (eNDD), exploiting that X-ray diffraction delivers data of superior quality, requires smaller sample volumes and has higher availability. NXMEM is tested on two widely different systems: PbTe and Ba8Ga16Sn30. The first compound, PbTe, possesses a deceptively simple crystal structure on the macroscopic level that is unable to account for its excellent thermoelectric properties. The key mechanism involves local distortions, and the capability of NXMEM to probe this intriguing feature is established with simulated powder diffraction data. In the second compound, Ba8Ga16Sn30, disorder among the Ba guest atoms is analysed with both experimental and simulated single-crystal diffraction data. In all cases, NXMEM outperforms the maximum entropy method by substantially enhancing the nuclear resolution. The induced improvements correlate with the amount of available data, rendering NXMEM especially powerful for powder and low-resolution single-crystal diffraction. The NXMEM procedure can be implemented in existing software and facilitates widespread characterization of disorder in functional materials. (C) 2015 International Union of Crystallography

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据