4.5 Article

Artificial microniches for probing mesenchymal stem cell fate in 3D

期刊

BIOMATERIALS SCIENCE
卷 2, 期 11, 页码 1661-1671

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4bm00104d

关键词

-

资金

  1. European Research Council (ERC) Advanced Grant [246812 Intercom]
  2. VICI grant from the Netherlands Organization for Scientific Research (NWO)
  3. Ministry of Education, Culture and Science (Gravity program) [024.001.035]

向作者/读者索取更多资源

Droplet microfluidics is combined with bio-orthogonal thiol-ene click chemistry to fabricate micrometer-sized, monodisperse fibrinogen-containing hyaluronic acid hydrogel microbeads in a mild, radical-free procedure in the presence of human mesenchymal stem cells (hMSCs). The gel beads serve as microniches for the 3D culture of single hMSCs, containing hyaluronic acid and additional fibrinogen for cell surface binding, and they are porous and stable in tissue culture medium for up to 4 weeks with mechanical properties right in the range of soft solid tissues (0.9-9.2 kPa). The encapsulation procedure results in 70% viable hMSCs in the microbeads after 24 hours of culture and a very high degree of viability of the cells after long term culture of 2 weeks. hMSCs embedded in the microniches display an overall rounded morphology, consistent with those previously observed in 3D culture. Upon induction, the multipotency and differentiation potential of the hMSCs are characterized by staining of corresponding biomarkers, demonstrating a clear heterogeneity in the cell population. These hydrogel microbeads represent a versatile microstructured material platform with great potential for studying the differences of material cues and soluble factors in stem cell differentiation in a 3D tissue-like environment at the single cell level.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据