4.5 Article

Controllably degradable β-sheet nanofibers and gels from self-assembling depsipeptides

期刊

BIOMATERIALS SCIENCE
卷 1, 期 10, 页码 1037-1045

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3bm60161g

关键词

-

资金

  1. National Institutes of Health (NIBIB) [1R01EB009701]
  2. National Institutes of Health (NCI) [U54 CA151880]
  3. National Science Foundation [CHE-0802286]
  4. Chicago Biomedical Consortium
  5. Searle Funds at The Chicago Community Trust

向作者/读者索取更多资源

Self-assembled peptide materials have received considerable interest for a range of applications, including 3D cell culture, tissue engineering, and the delivery of cells and drugs. One challenge in applying such materials within these areas has been the extreme stability of beta-sheet fibrillized peptides, which are resistant to proteolysis, degradation, and turnover in biological environments. In this study, we designed self-assembling depsipeptides containing ester bonds within the peptide backbone. Beta-sheet fibrillized nanofibers were formed in physiologic conditions, and two of these nanofiber-forming depsipeptides produced hydrogels that degraded controllably over the course of days-to-weeks via ester hydrolysis. With HPLC, TEM, and oscillating rheometry, we show that the rate of hydrolysis can be controlled in a straightforward manner by specifying the amino acid residues surrounding the ester bond. In 3D cell cultures, depsipeptide gels softened over the course of several days and permitted considerably more proliferation and spreading of C3H10T1/2 pluripotent stem cells than non-degradable analogs. This approach now provides a reliable and reproducible means to soften or clear beta-sheet fibrillized peptide materials from biological environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据