4.5 Article

Inhibiting the β-Lactamase of Mycobacterium tuberculosis (Mtb) with Novel Boronic Acid Transition-State Inhibitors (BATSIs)

期刊

ACS INFECTIOUS DISEASES
卷 1, 期 6, 页码 234-242

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsinfecdis.5b00003

关键词

Mycobacterium tuberculosis; beta-lactamase inhibition; boronic acid transitional state inhibitors; acylation high-energy intermediate; deacylation high-energy intermediate; cefoperazone analogue EC19

资金

  1. National Institute of Allergy and Infectious Diseases of the National Institutes of Health [R01AI100560, R01AI063517]
  2. NIH [AI060899]
  3. Cleveland Department of Veterans Affairs, Veterans Affairs Merit Review Program Award [1I01BX001974]
  4. Geriatric Research Education and Clinical Center VISN 10

向作者/读者索取更多资源

BlaC, the single chromosomally encoded beta-lactamase of Mycobacterium tuberculosis, has been identified as a promising target for novel therapies that rely upon beta-lactamase inhibition. Boronic acid transition state inhibitors (BATSIs) are a class of beta-lactamase inhibitors which permit rational inhibitor design by combinations of various R1 and R2 side chains. To explore the structural determinants of effective inhibition, we screened a panel of 25 BATSIs to explore key structure function relationships. We identified a cefoperazone analogue, EC19, which displayed slow, time dependent inhibition against BlaC with a potency similar to that of clavulanate (K-i* of 0.65 +/- 0.05 mu M). To further characterize the molecular basis of inhibition, we solved the crystallographic structure of the EC19-BlaC(N172A) complex and expanded our analysis to variant enzymes. The results of this structure function analysis encourage the design of a novel class of beta-lactamase inhibitors, BATSIs, to be used against Mycobacterium tuberculosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据