4.7 Article

Real photonic waveguides: guiding light through imperfections

期刊

ADVANCES IN OPTICS AND PHOTONICS
卷 6, 期 2, 页码 156-224

出版社

OPTICAL SOC AMER
DOI: 10.1364/AOP.6.000156

关键词

-

类别

资金

  1. European Community [ICT 257210]
  2. Italian PRIN project Shared Access Platform to Photonic Integrated Resources (SAPPHIRE)

向作者/读者索取更多资源

Real photonic waveguides are affected by structural imperfections due to fabrication tolerances that cause scattering phenomena when the light propagates through. These effects result in extrinsic propagation losses associated with the excitation of radiation and backscattering modes. In this work, we present a comprehensive review on the extrinsic loss mechanisms occurring in optical waveguides, identifying the main origins of scattering loss and pointing out the relationships between the loss and the geometrical and physical parameters of the waveguides. Theoretical models and experimental results, supported by statistical analysis, are presented for two widespread classes of waveguides: waveguides based on total internal reflection (TIR) affected by surface roughness, and disordered photonic crystal slab waveguides (PhCWs). In both structures extrinsic losses are strongly related to the waveguide group index, but the mode shape and its interaction with waveguide imperfections must also be considered to accurately model the scattering loss process. It is shown that as long as the group index of PhCWs is relatively low (n(g) < 30), many analogies exist in the radiation and backscattering loss mechanisms with TIR waveguides; conversely, in the high ng regime, multiple scattering and localization effects arise in PhCWs that dramatically modify the waveguide behavior. The presented results enable the development of reliable circuit models of photonic waveguides, which can be used for a realistic performance evaluation of optical circuits. (C) 2014 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据