3.8 Article

Development of Biomimetic Scaffolds with Both Intrafibrillar and Extrafibrillar Mineralization

期刊

ACS BIOMATERIALS SCIENCE & ENGINEERING
卷 1, 期 8, 页码 669-676

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsbiomaterials.5b00088

关键词

intrafibrillar mineralization; amorphous calcium phosphate nanoprecursors; biomimetic scaffold; hierarchical structure

资金

  1. NSF [CBET-1133883, CBET-1347130]
  2. GEMS Fellowship

向作者/读者索取更多资源

Bone is an organic-inorganic hierarchical biocomposite. Its basic building block is mineralized collagen fibers with both intrafibrillar and extrafibrillar mineralization, which is believed to be regulated by non collagenous proteins (NCPs) with polyanionic domains. In this study, collagen fibrils with both intrafibrillar and extrafibrillar mineralization were successfully prepared and the mechanism of biomineralization was proposed. Building on this success, a unique biomimetic lamellar scaffold composed of collagen fibrils with both intrafibrillar and extrafibrillar mineralization was fabricated using a combination of self-compression and unidirectional freeze-drying approach. To achieve intrafibrillar mineralization, we used poly(acrylic acid) (PAA) to sequester calcium and phosphate ions to form fluidic PAA-amorphous calcium phosphate (PAA-ACP) nanoprecursors. At the presence of sodium tripolyphosphate (TPP), PAA-ACP nanoprecursors were modulated to orderly deposit within the gap zone of collagen fibrils. The effect of PAA concentration on the intrafibrillar and extrafibrillar mineralization of reconstituted collagen fibrils was investigated. It was found that with the decrease in PAA concentration, the inhibitory effect of PAA on mineralization and the stability of ACP nanoprecursors decreased. As a result, more minerals were deposited both within and on the surface of the collagen fibrils. Moreover, with the ability to reproduce biomineralization of collagen fibrils, it allowed us to fabricate biomimetic hierarchical collagen/hydroxyapatite scaffolds composed of both intrafibrillar and extrafibrillar minerals using a bottom-up approach. This technique renders a promising biomimetic scaffold, which will be suitable for bone repair and regeneration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据