4.6 Article

Boosting ORR Electrocatalytic Performance of Metal-Free Mesoporous Biomass Carbon by Synergism of Huge Specific Surface Area and Ultrahigh Pyridinic Nitrogen Doping

期刊

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
卷 6, 期 11, 页码 13807-13812

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.8b01876

关键词

Oxygen reduction reaction; Chitosan; Biomass carbon; Pyridinic nitrogen; Specific surface area

资金

  1. National Natural Science Foundation of China [21671129, 21571124, 21671131]
  2. Shanghai Sailing Program [16YF1404400]
  3. Natural Science Foundation of Guangxi [2017GXNSFBA198216]

向作者/读者索取更多资源

Oxygen reduction reaction (ORR) plays a critical position in direct methanol fuel cells. However, electrocatalytic materials currently utilized in ORR use a rare and expensive metal Pt, so it is vital to develop cathode catalysts with cheap and high ORR activity. Herein, chitosan, a natural material made from chitin, was employed as a complex precursor of carbon source and nitrogen (N) source to synthesize N-doped mesoporous biomass carbon ORR catalysts. Adding different pore agents regulated specific surface area and N type of catalysts. The relationship between the properties of the catalysts and their ORR electrocatalytic performance was investigated. It was luckily found that the addition of ferric nitrate as a pore-forming agent created a huge specific surface area of the N-doped mesoporous biomass carbon (1190 m(2)/g) significantly. More importantly, the synthesized catalyst was doped by whole pyridinic-N at high content (11.58 at %) and inhibited the two-electron reaction efficiently, promoted the four-electron reaction, and accelerated the ORR reaction rate. Furthermore, it provided significant catalytic activity with robust methanol tolerance, and notable cycle stability, indicating the practical applicability of the huge surface area, ultrahigh pyridinic-N-doped mesoporous biomass carbon catalyst.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据