4.5 Review

The role of RNA in mammalian prion protein conversion

期刊

WILEY INTERDISCIPLINARY REVIEWS-RNA
卷 3, 期 3, 页码 415-428

出版社

WILEY
DOI: 10.1002/wrna.118

关键词

-

向作者/读者索取更多资源

Prion diseases remain a challenge to modern science in the 21st century because of their capacity for transmission without an encoding nucleic acid. PrPSc, the infectious and alternatively folded form of the PrP prion protein, is capable of self-replication, using PrPC, the properly folded form of PrP, as a template. This process is associated with neuronal death and the clinical manifestation of prion-based diseases. Unfortunately, little is known about the mechanisms that drive this process. Over the last decade, the theory that a nucleic acid, such as an RNA molecule, might be involved in the process of prion structural conversion has become more widely accepted; such a nucleic acid would act as a catalyst rather than encoding genetic information. Significant amounts of data regarding the interactions of PrP with nucleic acids have created a new foundation for understanding prion conversion and the transmission of prion diseases. Our knowledge has been enhanced by the characterization of a large group of RNA molecules known as non-coding RNAs, which execute a series of important cellular functions, from transcriptional regulation to the modulation of neuroplasticity. The RNA-binding properties of PrP along with the competition with other polyanions, such as glycosaminoglycans and nucleic acid aptamers, open new avenues for therapy. (c) 2011 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据