4.6 Article

Multi-Parameter Compensation Method for Accurate In Situ Fluorescent Dissolved Organic Matter Monitoring and Properties Characterization

期刊

WATER
卷 10, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/w10091146

关键词

coagulation; dissolved organic matter; drinking water treatment; fluorescence; remote sensing

资金

  1. Australian Government through the Australian Research Council [LP160100217]

向作者/读者索取更多资源

The recent deployment of fluorescent dissolved organic matter (fDOM) probes in dam catchments and drinking water treatment plants (DWTP) for water quality monitoring purposes has resulted in the production of a large amount of data that requires scientific evaluation. This study introduces a comprehensive, transferable methodological framework for scientists and water professionals to model fluorescence site-specific quenching on fDOM probe readings caused by temperature, suspended particles, and the inner filter effect (IFE) and applies it to an Australian subtropical reservoir. The findings revealed that quenching due to turbidity and IFE effects were best predicted by threshold autoregressive models. Raw fDOM probe measurements were validated as being more reliable if they were systematically compensated using the proposed procedure. The developed fDOM compensation procedure must consider the instrument features (i.e., wavelength broadband and responsiveness) and site-specific conditions (i.e., DOM characteristics and suspended particles). A finding of particular interest was that the compensated normalized fDOM readings had a high correlation with the low (<500 Da) molecular weight fraction of the DOM, which is more recalcitrant to removal by coagulation. As a consequence, there is potential to use compensated fDOM probe readings to provide real-time, in situ information on DOM properties in freshwater systems, which will enable water treatment plant operators to optimize the coagulation process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据