4.2 Article

Performance Assessment and Prediction of Welded Joints in Orthotropic Decks Considering Hourly Monitoring Data

期刊

STRUCTURAL ENGINEERING INTERNATIONAL
卷 23, 期 4, 页码 436-442

出版社

TAYLOR & FRANCIS LTD
DOI: 10.2749/101686613X13627351081470

关键词

orthotropic decks; structural health monitoring; remaining fatigue life assessment; monitoring-based predictive models; bridge management system; asset management

资金

  1. European Commission [238726]

向作者/读者索取更多资源

Orthotropic steel decks can experience fatigue at welded joints, the assessment of which turns out to be a complex task owing to their intricate geometry, the stochastic nature of the primary live load (traffic flow) and the temperature-dependent composite action between the pavement and the steel deck. In recent years, the possibility of monitoring, in addition to traditional inspections, has been put forward as a means of improved assessment. Nevertheless, a rigorous framework to (a) enable the effective use of high amounts of multiple/incomplete data provided by distributed data acquisition systems, (b) improve current monitoring-based assessment methods, and (c) enhance current simulation and data visualization techniques, is still absent. A theoretical framework is presented in which a stress-related performance indicator is estimated through a multiple regression model with hourly pavement temperatures and heavy traffic intensities as independent variables. The proposed performance indicator is proportional to fatigue damage following the principles of the S-N approach and the Miner's rule. Typical applications of this model include (a) analysis of monitoring outcomes for performance assessment, (b) performance prediction of past/future events and (c) fatigue assessment. To illustrate the proposed approach, model-based performance predictions are benchmarked with real monitoring outcomes from the Great Belt Bridge (in Denmark), and good agreement has been observed. Moreover, model predictions are used to estimate the fatigue life of a monitored welded joint. The new methodology enhances Structural Health Monitoring (SHM) methods for orthotropic decks and provides a framework to integrate and visualize the multiple outcomes produced by modern monitoring systems as a part of the Bridge Management System or to assess the remaining life of structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据