4.6 Article

Use of a Synthetic Xeno-Free Culture Substrate for Induced Pluripotent Stem Cell Induction and Retinal Differentiation

期刊

STEM CELLS TRANSLATIONAL MEDICINE
卷 2, 期 1, 页码 16-24

出版社

WILEY
DOI: 10.5966/sctm.2012-0040

关键词

Induced pluripotent stem cells; Stem cell culture; Retina; Reprogramming; Pluripotent stem cells; Clinical translation

资金

  1. NIH [1-DP2-OD007483-01]
  2. Research to Prevent Blindness
  3. Foundation Fighting Blindness
  4. Grousbeck Family Foundation
  5. Corley Research Fund

向作者/读者索取更多资源

The purpose of this study was to determine whether a proprietary xeno-free synthetic culture surface could be used to aid in the production and subsequent retinal-specific differentiation of clinical-grade induced pluripotent stem cells (iPSCs). iPSCs were generated using adult somatic cells via infection with either a single cre-excisable lentiviral vector or four separate nonintegrating Sendai viruses driving expression of the transcription factors OCT4, SOX2, KLF4, and c-MYC. Retinal precursor cells were derived via targeted differentiation of iPSCs with exogenous delivery of dkk-1, noggin, insulin-like growth factor-1, basic fibroblast growth factor, acidic fibroblast growth factor, and DAPT. Phase contrast microscopy, immunocytochemistry, hematoxylin and eosin staining, and reverse transcription-polymerase chain reaction were used to determine reprogramming efficiency, pluripotency, and fate of undifferentiated and differentiated iPSCs. Following viral transduction, cells underwent prototypical morphological changes resulting in the formation of iPSC colonies large enough for manual isolation/passage at 3-4 weeks postinfection. Both normal and disease-specific iPSCs expressed markers of pluripotency and, following transplantation into immune-compromised mice, formed teratomas containing tissue comprising all three germ layers. When subjected to our established retinal differentiation protocol, a significant proportion of the xeno-free substrate-derived cells expressed retinal cell markers, the number of which did not significantly differ from that derived on traditional extracellular matrix-coated dishes. Synthetic cell culture substrates provide a useful surface for the xeno-free production, culture, and differentiation of adult somatic cell-derived iPSCs. These findings demonstrate the potential utility of these surfaces for the production of clinical-grade retinal neurons for transplantation and induction of retinal regeneration. STEM CELLS TRANSLATIONAL MEDICINE 2013;2:16-24

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据