4.7 Article

Toward Long-Term Aquatic Science Products from Heritage Landsat Missions

期刊

REMOTE SENSING
卷 10, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/rs10091337

关键词

Landsat; coastal/inland waters; atmospheric correction; vicarious calibration; validation; water quality; time-series applications

资金

  1. NASA ROSES [NNX16AI16G]
  2. USGS Landsat Science Team Award [140G0118C0011]
  3. Massachusetts Institute of Technology SeaGrant Award [2015-R/RC-140]
  4. NASA [902968, NNX16AI16G] Funding Source: Federal RePORTER

向作者/读者索取更多资源

This paper aims at generating a long-term consistent record of Landsat-derived remote sensing reflectance (R-rs) products, which are central for producing downstream aquatic science products (e.g., concentrations of total suspended solids). The products are derived from Landsat-5 and Landsat-7 observations leading to Landsat-8 era to enable retrospective analyses of inland and nearshore coastal waters. In doing so, the data processing was built into the SeaWiFS Data Analysis System (SeaDAS) followed by vicariously calibrating Landsat-7 and -5 data using reference in situ measurements and near-concurrent ocean color products, respectively. The derived R rs products are then validated using (a) matchups using the Aerosol Robotic Network (AERONET) data measured by in situ radiometers, i.e., AERONET-OC, and (b) ocean color products at select sites in North America. Following the vicarious calibration adjustments, it is found that the overall biases in R-rs products are significantly reduced. The root-mean-square errors (RMSE), however, indicate noticeable uncertainties due to random and systematic noise. Long-term (since 1984) seasonal R-rs composites over 12 coastal and inland systems are further evaluated to explore the utility of Landsat archive processed via SeaDAS. With all the qualitative and quantitative assessments, it is concluded that with careful algorithm developments, it is possible to discern natural variability in historic water quality conditions using heritage Landsat missions. This requires the changes in R-rs exceed maximum expected uncertainties, i.e., 0.0015 [1/sr], estimated from mean RMSEs associated with the matchups and intercomparison analyses. It is also anticipated that Landsat-5 products will be less susceptible to uncertainties in turbid waters with R-rs(660) > 0.004 [1/sr], which is equivalent of similar to 1.2% reflectance. Overall, end-users may utilize heritage R-rs products with fitness-for-purpose concept in mind, i.e., products could be valuable for one application but may not be viable for another. Further research should be dedicated to enhancing atmospheric correction to account for non-negligible near-infrared reflectance in CDOM-rich and extremely turbid waters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据