4.7 Article

Hyperspectral Image Classification Based on Parameter-Optimized 3D-CNNs Combined with Transfer Learning and Virtual Samples

期刊

REMOTE SENSING
卷 10, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/rs10091425

关键词

remote sensing image; convolutional neural network; optimal parameter; lack of sample; tensor analysis

资金

  1. National Natural Science Foundation of China [61401244, 61773227]

向作者/读者索取更多资源

Recent research has shown that spatial-spectral information can help to improve the classification of hyperspectral images (HSIs). Therefore, three-dimensional convolutional neural networks (3D-CNNs) have been applied to HSI classification. However, a lack of HSI training samples restricts the performance of 3D-CNNs. To solve this problem and improve the classification, an improved method based on 3D-CNNs combined with parameter optimization, transfer learning, and virtual samples is proposed in this paper. Firstly, to optimize the network performance, the parameters of the 3D-CNN of the HSI to be classified (target data) are adjusted according to the single variable principle. Secondly, in order to relieve the problem caused by insufficient samples, the weights in the bottom layers of the parameter-optimized 3D-CNN of the target data can be transferred from another well trained 3D-CNN by a HSI (source data) with enough samples and the same feature space as the target data. Then, some virtual samples can be generated from the original samples of the target data to further alleviate the lack of HSI training samples. Finally, the parameter-optimized 3D-CNN with transfer learning can be trained by the training samples consisting of the virtual and the original samples. Experimental results on real-world hyperspectral satellite images have shown that the proposed method has great potential prospects in HSI classification.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据