4.7 Article

Coherence Difference Analysis of Sentinel-1 SAR Interferogram to Identify Earthquake-Induced Disasters in Urban Areas

期刊

REMOTE SENSING
卷 10, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/rs10081318

关键词

InSAR; coseismic coherence difference; liquefaction; Meinong earthquake; surface displacement

资金

  1. Ministry of Science and Technology, Republic of China [MOST 106-2917-I-008-004, MOST 106-2811-M-008-078, MOST 106-2116-M-008-017, MOST 106-2625-M-008-004]

向作者/读者索取更多资源

This study proposes a workflow that enables the accurate identification of earthquake-induced damage zones by using coherence image pairs of the Sentinel-1 satellite before and after an earthquake event. The workflow uses interferometric synthetic aperture radar (InSAR) processing to account for coherence variations between coseismic and preseismic image pairs. The coherence difference between two image pairs is useful information to detect specific disasters in a regional-scale area after an earthquake event. To remove background effects such as the atmospheric effect and ordinal surface changes, this study employs the two-step threshold method to develop the coseismic coherence difference (CCD) map for our analyses. Thirty-four Sentinel-1 images between January 2015 and February 2016 were collected to process 30 preseismic image pairs and two coseismic image pairs for assessing multiple types of disasters in Tainan City of southwestern Taiwan, where severe damages were observed after the Meinong earthquake event. The coseismic unwrapping phases were further calculated to estimate the surface displacement in east-west and vertical directions. Results in the CCD map agree well with the observations from post-earthquake field surveys. The workflow can accurately identify earthquake-induced land subsidence and surface displacements, even for areas with insufficient geological data or for areas that had been excluded from the liquefaction potential map. In addition, the CCD details the distribution of building damages and structure failures, which might be useful information for emergency actions applied to regional-scale problems. The conversion of 2D surface displacement reveals the complex behavior of geological activities during the earthquake. In the foothill area of Tainan City, the opposite surface displacements in local areas might be influenced by the axis activities of the Kuanmiao syncline.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据