4.7 Article

Allometric Scaling and Resource Limitations Model of Tree Heights: Part 2. Site Based Testing of the Model

期刊

REMOTE SENSING
卷 5, 期 1, 页码 202-223

出版社

MDPI
DOI: 10.3390/rs5010202

关键词

tree height; allometric scaling law; resource limitation; GLAS; model optimization

资金

  1. National Natural Science Foundation of China [40801139, 41175077]
  2. China Scholarship Council
  3. Fulbright Foundation

向作者/读者索取更多资源

The ultimate goal of this multi-article series is to develop a methodology to generate continuous fields of tree height and biomass. The first paper demonstrated the need for Allometric Scaling and Resource Limitation (ASRL) model optimization and its ability to generate spatially continuous fields of tree heights over the continental USA at coarse (1 km) spatial resolution. The objective of this second paper is to provide an assessment of that approach at site scale, specifically at 12 FLUXNET sites where more accurate data are available. Estimates of tree heights from the Geoscience Laser Altimeter System (GLAS) waveform data are used for model optimization. Amongst the five possible GLAS metrics that are representative of tree heights, the best metric is selected based on how closely the metric resembles field-measured and Laser Vegetation Imaging Sensor tree heights. In the optimization process, three parameters of the ASRL model (area of single leaf, alpha; exponent for canopy radius, eta; and root absorption efficiency, gamma) are simultaneously adjusted to minimize the difference between model predictions and observations at the study sites (distances to valid GLAS footprints <= 10 km). Performance of the optimized ASRL model was evaluated through comparisons to the best GLAS metric of tree height using a two-fold cross validation approach (R-2 = 0.85; RMSE = 1.81 m) and a bootstrapping approach (R-2 = 0.66; RMSE = 2.60 m). The optimized model satisfactorily performed at the site scale, thus corroborating results presented in part one of this series. Future investigations will focus on generalizing these results and extending the model formulation using similar allometric concepts for the estimation of woody biomass.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据